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1. INTRODUCTION

Functionally based implicit surfaces [Bloomenthal 1997b] were in-
troduced in the eighties as promising alternatives to mesh-based
and parametric representations. They opened the way to construc-
tive modeling systems where different object components could be
smoothly blended, and enabled the production of animations where
fluid-like objects could change topology over time through succes-
sive merging and splitting. These effects were achieved by combin-
ing field functions using a composition operator. Surprisingly, after
being enhanced in the nineties by the introduction of convolution
surfaces [Bloomenthal 1997b] and of general construction trees
[Wyvill et al. 1999], little advance was made on such operators in
the last decade, leaving four major problems unsolved.

(1) Bulging problem. Implicit blending creates unwanted bulging.
For instance, a shape generated by blending together some
implicit cylinders defined in the same plane will necessarily be
thicker where the cylinders join, as shown in Figure 1(a-left)
where the “A” is composed of three blended cylinders. The
expected result is the “A” on the right.

(2) Locality problem. Implicit models typically blend at a distance.
This is a major problem in modeling applications, where pre-
venting the blend between at least some parts of the mod-
els (e.g., between the hand and the head of the character in
Figure 1(b)) is necessary. The issue is serious in animation too,
where pieces of soft material should be allowed to deform each
other and eventually blend, but only where they collide.
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Fig. 1. (a) The unwanted bulge created by standard blending (left) is suppressed by our gradient-based method while preserving the desired topological genus
(right). (b) We also prevent small details from blowing up and primitives from blending where they do not intersect. (c) Our generic framework allows the
modeling of a wide range of composition operators such as “bulge in contact” and (d) blending (left) and “bulge in contact” (right) combined in the same
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animation to mimic a lavalamp.
£

.
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Fig. 2. Three compositions applied to a pair of cylindrical implicit primi-
tives forming a cross: (a) standard union based on max; (b) clean union;
(c) Barthe’s blending operator parameterized by an opening angle 6.
First row: plots of g(f1, f2) where the axes are f; and f>. Black lines:
some iso-curves, white line: 0.5-iso-curve (surface of interest), background
color: gradient direction with vertical (respectively, horizontal) gradient
in blue (respectively, in red), green lines: boundaries outside of which
g = max(f1, f2). Second row: implicit surface g(fi, f2) = 0.5. Some
iso-lines of g are depicted in a horizontal cutting plane.

(b

(3) Absorption problem. Sharp and thin details are smoothed and
they blow up when blended into larger implicit primitives, since
they are totally included into the support region of the latter.
This problem prevents the creation of thin details such as the
eyelashes in Figure 1(b). This is why implicit surfaces have the
reputation of only producing simple, blobby shapes.

(4) Topology problem. Lastly, although implicit modeling is an
excellent way of generating arbitrary topologies, blending often
produces material that will fill a hole that a designer intended,
for example, the center of the “A” in Figure 1(a-left). The user
has no easy way to control, or at least to predict, the resulting
topology.

Solving the preceding problems is essential for both construc-
tive modeling and animation. While individual solutions have been
proposed, none of them solves all these four issues at once. Doing
so efficiently opens the way to many applications, from sketch-
based interactive design of 3D shapes (Figure 1(b)) to the inter-
active animation of deformable solids (Figures 1(c) and 1(d)). We
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review the state-of-the-art and the contributions before presenting
the required technical background and our general solution to these
four problems.

1.1 Previous Work

Implicit surfaces are well known for their ability to combine shapes
by simply composing the associated field functions. Composition
is generally expressed as a binary operation, except for the n-ary
operators; max, which results in a union and sum, which generates
smooth blending between the input shapes [Sabin 1968; Ricci 1973;
Blinn 1982]. Improving composition operators has been a major
topic of research, and modeling techniques were enhanced by the
introduction of clean union operators generating an exact union
of the input shapes but with a smooth field everywhere else and
of blending operators with local shape control [Pasko et al. 1995;
Barthe et al. 2004]. Other operators were developed for animation
applications, such as the generation of a contact surface surrounded
by bulges when soft objects collide [Cani 1993].

The elimination of the bulging problem was only tackled in two
seminal papers: Rockwood [1989] proposed an operator, the su-
perelliptic blend, where the range of the blend is parameterized
by the cosine of the angle between the field gradients. With this
formulation, the blend smoothly transitions to a union where the
composed objects’ surfaces become collinear. Even though sup-
pressing the unwanted bulges, this operator was C° only and in-
creased both the locality problem and the topology problem, as
reported in Bloomenthal [1997a]. The latter discussed alternative
solutions for the n-ary composition of skeleton-based primitives:
the kernels or the skeletons of convolution surfaces were used to
parameterize a switch from sum to max operators. In addition to not
being generally applicable, the lack of smoothness of these early
solutions limited their usability in the case of successive blends.
Our work builds on Rockwood [1989] since our new composition
operators are smooth functions of the angle between field gradients.

Although identified early [Bloomenthal 1997b], the locality prob-
lem was only solved recently in a general setting [Pasko et al. 2005;
Bernhardt et al. 2010]. The proposed solutions are based on an
extra implicit primitive, the blending volume, whose field is used
to interpolate between blending and clean union (such as those of
Figure 2). Bernhardt et al. [2010] automatically generate blending
volumes around intersection curves and sets parameters such that
small primitives do not blow up, providing a solution to the absorp-
tion problem as well, however, this method has some drawbacks.

(1) Only G' continuous field functions are produced leading to
curvature artifacts illustrated with reflection lines in Figure 3(c).
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Fig. 3. Bernhardt’s operator interpolating between clean union and
Barthe’s blending. The distortions of the iso-curves of g (a) result in a
G!-only implicit surface (b) which still has a bulge on top and exhibits a
poor curvature distribution, shown by depicting reflection lines (c).

(2) Computations involve sampling the intersection curve be-
tween the two input surfaces or extracting the curve from the
intersection of the meshes used for display. This makes the so-
lution costly and not scalable, especially in applications where
many intersection curves would need to be generated at differ-
ent resolutions, such as in a detailed model.

The new method presented here is a more general, scalable ap-
proach and is able to restrict blending to regions where the input
shapes intersect. At the same time the topological genus of the re-
sulting shape can be constrained to remain that of the union (fopol-
ogy problem), which none of the previous solutions could achieve.

Among recent uses of implicit surfaces, we can notice several
experimental sketch-based modeling systems [Savchenko et al.
1995; Karpenko et al. 2002; Alexe et al. 2005; Wyvill et al. 2005;
Bernhardt et al. 2008; Brazil et al. 2010] for which our new
composition method would be especially useful.

1.2 Contributions

We present a generic family of composition operators that brings
a unified solution to the four major problems mentioned before.
The key idea is to parametrize the blending by the angle between
the gradients of the combined field functions, as suggested by
Rockwood [1989]. This enables us to interpolate between a union
and a blend in the same composition. Using these operators we
generate smooth blending between some parts of input shapes and
union elsewhere. Blends near intersections are localized without
requiring any extra implicit primitive, which makes the method
efficient and scalable. In contrast with early work the operators
described using our system are C* continuous, which is a sufficient
property to handle successive compositions.

Our blending technique preserves sharp details and gives enough
control on the blend localization so that in general, the topology
of the composed object can remain that of the union, which makes
composition predictable and well suited to constructive modeling
frameworks. Our operators can also be tuned to animate progressive
separation of soft material while preventing disjoint parts from
blending at a distance. They can also generate contact surfaces
surrounded by bulges, possibly followed by progressive merging,
when soft objects collide.

The method is generic among functionally based implicit sur-
faces. Although it can be applied to discrete fields as well, where f
is defined as some interpolation of sample values stored in a grid, we
do not address level-set modeling frameworks since the composed
field functions we output are not governed by differential equations.

This article derives our solution for local implicit primitives, such
as soft objects and metaballs. As explained in the next section, these
surfaces are the most challenging to handle since the composed field
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has to maintain compact support. However, our framework also ap-
plies to globally supported primitives, as we illustrate in Section 5.1
with convolution surfaces. Section 2 presents the necessary back-
ground and we refer to Bloomenthal [1997b] for a full description
of implicit models.

2. BACKGROUND

Implicit surfaces. A functionally based implicit surface S is the
C-iso-surface of a field function f : R — R, defined as
S={peR’| f(p)=C). ()]

We can identify two types of field functions: globally supported
and locally supported field functions.

In fields of global support, implicit surfaces are defined as 0-iso-
surfaces and the inside of the surface can be either defined by points
p in space such that f(p) < 0 as in Hoffman and Hopcroft [1985]
and Barthe et al. [2001] works, or by points p in space such that
f(p) > 0 as in Pasko et al. [1995] works.

Local support field functions are commonly positive, decreasing
functions of the distance, for instance, to a skeleton, that vanish
at a distance R from this skeleton. A skeleton can be a point, a
line segment, etc. In this case, the implicit surface is an iso-surface
“around” the skeleton, for example, a sphere if the skeleton is a
point. The implicit surface is the 0.5-iso-surface, and we use the
convention that f(p) > 0.5 defines the interior and f decreases
outside an object.

Composing field functions. One of the strengths of implicit mod-
eling is the ability to combine fields to form a new shape, using a
composition operator as

=g, ), (@)

where g : R> — Risa binary composition operator, f; and f, are
field functions defining the combined implicit surfaces, and f is the
field function defining the resulting object. As we will see, different
operators are to be developed for global and local field functions.

Blending. A standard operator for generating smooth blends is
the sum [Blinn 1982]

8(f1. )= fHi + fo. (3)
Unfortunately, it does not provide any control on the shape of the
resulting blend, and can only be applied to local support field func-
tions or to convolution surfaces. Therefore, several binary blending
operators were proposed over the years for field functions with
global support [Bloomenthal 1997b]. The idea is to blend 0-iso-
surfaces while meeting specific limit properties, continuity con-
straints, or aspect of iso-curves [Hoffmann and Hopcroft 1985;
Rockwood 1989; Barthe et al. 2001]. For instance, the superelliptic
blend [Rockwood 1989] is defined as

g(flsf2)=1—|:1;]fli| —[l_fz} : )

+ 2 +
where [*], = max(0, %), ¢ controls the shape of the blend, making
it closer to the combined objects when it increases, and r; and r,
control the boundaries of the blend on each combined primitive. This
operator exhibits some gradient discontinuities that can be avoided
by using the Pasko et al. blending set-theoretic operator [1995]
defined as:

g )= fit+ =P+ P+ ﬁ )

2
+ al) +(a2

where ay, a;, and a, have an equivalent effect on the blend than, re-
spectively, t, |, and r, in Eq. (4). Better field variations and user con-
trol can be achieved using the Barthe et al. functional blend [2001]
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defined as
g(f1, f2) = min(fi, f2) — H(fi — f2]), (6)

where H : R — R is a piecewise cubic polynomial defining the
shape of the blend from user-selected control points.

Union. Another well-known operator performs a union using
the max function [Sabin 1968; Ricci 1973]

g(f1, f2) = max(fi. f2). O]

This operator generates C° continuous field functions that can
cause creases on subsequent blends with additional surfaces.

Clean union. Clean union operators have been introduced by
Pasko et al. [1995] (Eq. (8)) and improved by Barthe et al. [2003]
for field functions with global support.

g(f17f2)=f1+f2—\/f|2+fzz (3

They improve on the standard max operator whose sharp field
is illustrated in Figure 2(a-bottom) by performing a union of the
surfaces while providing a smooth field function everywhere else
(Figure 2(b-bottom)). In a sense, a clean union operator is a union
operator on the combined surfaces and a blending operator of their
field functions everywhere else. This allows an object built using
such an operator to be later blended with another implicit primitive
without introducing unwanted sharp edges into the blend [Pasko
and Adzhiev 2004].

Visual representation of binary operators. In their work,
Hoffman and Hopcroft [1985] introduce an R? space in which op-
erators g are defined and plotted with the value of the field functions
/i1 and f, respectively as abscissa and ordinate. In this space, ver-
tical lines represent the iso-surfaces of the field function f; and
the horizontal lines, those of the field function f,. The top row of
Figure 2 illustrates three operators plotted in this space in which the
white line represents the object iso-surface. The composition oper-
ator g = max is represented as in Figure 2(a) while a clean union
operator is represented as in Figure 2(b) and a blending operator
that smoothly links iso-surfaces of the field function f; with those
of the field function f; at the vicinity of their intersection (i.e., close
to fi = f) is represented as in Figure 2(c).

Composing locally supported field functions. When using
locally supported field functions, primitives are defined by 0.5-
iso-surfaces and field functions uniformly equal zero outside the
boundary of their support. Thus, composition operators have to be
such that g(0, f>) = f> (on and outside the support of f;, g repro-
duces the field function f,) and g(f;, 0) = f; (on and outside the
support of f,, g reproduces the field function f). This also implies
that g(0, 0) = 0. These properties make the definition of composi-
tion operators more subtle and tedious than for global supports. All
these properties are fulfilled by the operators presented in Figure 2.
For instance, the clean union operator presented in Barthe et al.
[2004], similar to the one depicted in Figure 2(b), is defined as

g(fi. f2)

max(fi, ) if ( , < Land (fz > Jhor < 2f12>>

= or (fl > %and (fz < % or f, > 2f12)) O]

otherwise

(C:he(fi, p)=1)
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in which fi¢ is defined as

(f1-202)*+(fr-2c2)°

c-2C2 lffl S%
he(fi, fo) = T T (10)
fi—a/7) 2= 7) .
/T otherwise.

An intricate closed-form solution for the computation of C is
given in Barthe et al. [2004]. For blending operators, the sharpness
of the blending shape can be controlled by a parameter ¢ if the sum
is replaced by [Ricci 1973]

s f=(fi+ ). (11)

However, if some additional control is required on the blend
boundary, as was achieved in the global support case through
Eqgs. (4), (5), and (6), then the blending operator proposed in Barthe
et al. [2004] needs to be used. This operator is illustrated in
Figure 2(c) with 6 = 6, = % — 6, and defined as

max(fi, f2) if fa <tan(6,)f; or fi < cot(6:) f
g(fi. fo) = )
{C : hc(fi, ) =1} otherwise
(12)
in which f, = tan(6,) f; and f; = cot(6,) f> correspond to the green
lines in Figure 2(c) (the max is used under the first line and on the
left of the second). In between these two lines, /¢ is defined as

(fi — C.cot(62))* = (f> — C.tan(6)))’
(C = C.cot(6,))*  (C — C.tan(6,))>

and 0,, 6, control the boundaries of the blend on each combined
primitive (as ry, r, in Eq. (4) and ay, a, in Eq. (5)).

EC(,fl? f2) =

13)

Opening angles to control the blend. Our solution is based
on the work by Barthe et al. [2004] we already mentioned, in which
the operator g, is designed to:

(1) give fine control over the resulting shape, as does the superellip-
tic blend [Hoffmann and Hopcroft 1985; Hsu and Lee 2003];

(2) avoid the gradient discontinuities in the field function exhibited
by displacement blends [Rockwood 1989];

(3) handle field functions with local support.

The solution presented in Eq. (12) uses the concept of an opening
angle 6 € [0, /4] (Figure 2(c)) first introduced in Barthe et al.
[2003]. The blend is delimited by boundary lines (green lines in
Figure 2(c)). Inside these boundaries the iso-lines of g( fi, f>) are
arcs of ellipses defined in Eq. (13) (as suggested in Hoffmann and
Hopcroft [1985]). Outside, no blend occurs and the resulting field
function is defined as f = g(fi, f2) = max(fi, f») (Eq. (12))
in order to exactly reproduce one of the fields of the input field
functions. The boundary lines are controlled by varying the opening
angle 0 so that any intermediate blending (illustrated with 6 = 7/8
in Figure 2(c)) can be produced between a full blend when 6 = 0 and
aunion (g = max)when6 = /4 (Figure2(a)). When6 € [0, 7 /4],
this operator is G' continuous and when 8 = 7 /4, itis C°.

In practice, the opening angle can be set automatically from
a point p, selected in object space R>, on one of the primitives
where the user wants to switch between blending and union. For
instance, suppose that the point p(x, y, z) is selected on the 0.5-
iso-surface of the field function fj, thatis, fi(p) = 0.5. Then, in
the R? space (Figure 2(c) top) the opening angle @ is calculated
with the values of the field functions f; and f, at the point p
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Fig. 4. Comparison between standard blending (first row)—equivalent to a null opening function—and our method (second row) with a opening function that
smoothly switches from clean union when & = 0 or « = 7 to blending when o = 7/2. Our solutions to: (a) unwanted bulge; (b) blow up of small details;

(c) blending at distance; (d) topology modification; (e) plot of 6(w).

as 6 = arctan(fo(p)/fi(p)) = arctan(2 f>(p)). The point p can
also be set automatically from the relative size of the composed
primitives [Bernhardt et al. 2010].

Interpolating between clean union and blending. Opera-
tors interpolating between clean union and blending are able to
perform both union and a smooth blend in the same composition.
For instance, they enable the combined objects to blend where they
are in contact while avoiding any shape deformation everywhere
else. They have been introduced by Pasko et al. [2005] for globally
supported field functions. Pasko’s operator is defined by Eq. (5) in
which the coefficient a, varies: if ap = 0, the operator performs a
clean union (as in Eq. (8)), and the larger ay, the larger the blending.
Bernardt et al. [2010] proposed such an operator for locally sup-
ported field functions. This operator linearly interpolates between
the clean union operator defined in Eq. (9) and the blending opera-
tor defined in Eq. (12). The limitations of these methods have been
discussed in Section 1.1 and Bernhardt’s operator is illustrated in
Figure 3. Note that the clean union operator introduced in Barthe
et al. [2004] (Figure 2(b)) does not support the insertion of an open-
ing angle that would allow the interpolation between a blend and a
clean union.

3. GRADIENT-BASED COMPOSITION

Let f; and f; be the field functions of the implicit primitives to be
composed and g be the composition operator we are looking for.
As in Rockwood [1989], we claim that g should not only depend
on fi and f,, but also on their gradients. Indeed, this appears as a
pertinent option to smoothly blend intersecting shapes where they
form a sharp angle, while avoiding bulges where their surfaces are
already aligned. This section first presents the key features of our
solution. We then explain the field continuity issues that motivate
the introduction of a family of quasi-C* operators in Section 4.

3.1 Controlling Opening from Angle between
Gradients

As we just mentioned, g should be able to generate smooth blending
between selected parts of the input shapes and union elsewhere.
Following Barthe et al. [2004] we choose g with an opening angle
parameter 6 € [0, /4] (see Figure 2(c) and Section 2). 6 controls

the locality of the blend, that is, the limit values in the (f1, f>) space
out of which a union is computed.

The key feature of gradient-based blending is to define the open-
ing angle 6 as a function of the angle « between the field gradients
at the query point p

Vii(p) -V fa(p)
IVAMDIIY A

where « is the angle between the field gradients and the opening
angle 0 : [0, ] — [0, /4] is defined as a continuous function we
call an opening function.

While a constant opening function 6 applies the same type of
composition everywhere along the input surfaces (such as smooth
blending, shown in the first row of Figure 4), choosing opening
functions that adequately tune the opening angle according to o
allows us to seamlessly solve the four challenging problems we
mentioned. Figure 4 shows how this is achieved; from left to right
we have:

0 = 0(a(p)) with a(p) = arccos (14)

(a) the bulging problem: The “T” in the top row shows the
inflation produced by smooth blending where surfaces are aligned
(o close to 0). To avoid this, the opening function should switch to
union when o = 0 (aligned gradients). This is done by choosing 6
such that 6(0) = 7 /4 (union for aligned gradients) and 6(7r/2) = 0
(blending for orthogonal gradients).

(b) This behavior also naturally prevents the absorption problem
on small details since the inflation produced by the blend is gradually
reduced as we come close to the “top” of sharp features (where the
input surfaces are aligned).

(c) The locality problem occurs when two surfaces come close to
each other and blend while they do not intersect, so when « is close to
7. This is easily avoided by choosing 8 such as 6() = /4 (union
for opposing gradients) and (v /2) = O (blending for orthogonal
gradients).

(d) This setting also avoids the fopology problem, that is, the
change of topological genus shown on top, since there are points
inside each handle where the angle between gradients is 7 and
which will therefore remain outside of the composed shape.

The opening functions used to generate these compositions are
depicted in Figure 4(e). Note that the one on the second row, which
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Fig.5. (a) Two cylindrical implicit primitives are combined using Barthe’s
G operator, where our gradient-based opening function is used to set the
opening angle. The resulting shape still looks smooth; (b) a third primitive
is added with the same blending operator. A C” sharp crease now appears;
(c) same scene using our new quasi-C* blending operator.

we call the camel opening function for its shape, solves all four
challenging problems we mentioned. It will be fully described in
Section 5.

3.2 Continuity Issues

Computing composition based on the gradients of the input fields
having a finite level of continuity locally causes a loss of one order
of continuity for the resulting field. This decrease cannot be avoided,
but efforts can be made such that neither the opening function 6 nor
the composition operator g (based on it) introduce any extra source
of discontinuity, which could cause artifacts in case of consecutive
blends. In particular, Barthe’s operator [Barthe et al. 2004], depicted
in Figure 2(c), cannot be used in our framework since it is G' only
and sets up a transition to a standard, C°-only union. If the opening
angle of this operator is set to a function 6 of the field gradients, it
generates a G! field function with the expected blend after the first
composition (Figure 5(a)) and the loss of continuity after each com-
position results in a C° field function with a sharp edge in the second
blend (Figure 5(b)) while a smooth blend as the one illustrated in
(Figure 5(c)) was expected. Higher-degree polynomials could be
used to define the composition operator, but this would still limit
the number of compositions that can be consecutively performed in
the same region. Instead, our goal is to define C* operators g based
on C* opening functions 6 and to set them to control transition to
a clean union (with a smooth field everywhere outside the surface
of interest) when 6 = /4.

The constraint for g and 6 to be C*™ is in fact theoretical: in prac-
tice, we just need g and 6 to approximate some C* functions at a
given precision. This has to be done without introducing oscillations
in the field, since the latter would result in curvature artifacts. We
say that a function verifying this looser constraint is quasi-C* con-
tinuous. Relaxing our continuity constraint to quasi-C* will enable
us to efficiently store our operators as textures on the GPU and to
evaluate them with hardware linear interpolation.

Section 4 introduces our opening functions and our new compo-
sition operators, which are applied to shape modeling and animation
in Section 5. In these sections, the input fields are supposed to be
singularity free, that is, with smoothly varying, nonzero gradients
vectors. The application of our framework to more general settings
will be discussed in Section 6.

4. QUASI-C* OPERATORS
4.1 Opening Functions

In this section we describe a practical set of C* functions for defin-
ing the opening functions 6 that convert the angle between gradients
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Fig. 6. Role of the slope of 6 in blending. The red (respectively, blue)
vectors are gradients of the horizontal (respectively, vertical) primitive.
(a) Union; (b) blending with a sharp opening function (wg = w; = 3):
unwanted bumps appear where the surfaces are almost aligned, since 6 falls
very quickly to O there; (c) tuning the slope of 6 according to the type of
input primitives while keeping its other parameters unchanged solves the
problem. Here, we set wg = w; = 1, a value preselected for soft objects.

0
0y - /4
6>
04
0
O 04 Oy T 0,g=0 oy=n/2 Olp=T
(@ (b)

Fig. 7. (a) The 8 parameters of a opening function 6 with wy = w;
respectively equal to 3, 1, and 1/3 for the red, blue, and green curves;
(b) three possible opening functions for the blend in Figure 6, using the
same values for wg and w;.

into the opening angle of the composition operator. Based on the
work of Section 3 this family of functions should be flexible enough
to implement various modes of conversion, including, but not re-
stricted to those of Figure 4(e). Opening functions designed to model
organic shapes and to animate contact situations will be shown in
Section 5. The family of functions needed for 6 should enable to
set some key values and provide some slope control, without which
unwanted bumps may appear, depending on the slopes of the input
fields around regions where a clean union is applied. See Figure 6.
We therefore use a class of functions 6(«), « € [0, 7] defined
from eight parameters oy, o, o2, 69, 01, 65, wo and w,. We have

6o o < a
oa—a wo .
K (ao,all )) (6o —0) + 0, ifa €]ag, 4]
O(ar) = N (15)
c(22) @ -0 +61 ifa el
6, otherwise
where
1
=1-—e 1l—- . 16
wo=t-on(i- )

This function is controlled with eight parameters: three values of
a; (i =0,1,2), where «y and «, are limits of the intervals [0, ag]
and [a,, 7r] in which 0 is set to be constant, and the three associated
values for 6 (6 = 6(ay), 61 = 0(c), 0, = 0(p)) and two additional
parameters wy and w; controlling the slope of the opening function
in respectively [ag, ;] and [«], a5 ]. See Figure 7. In order to ensure
C* continuity, 0 is piecewise defined from a function « of class C*
that is flat at the boundaries of its support (i.e., all their successive
derivatives equal zero).
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Fig. 8. Our operator g. First row: The opening angle 6 defines the width of
the region where composition (here, smooth blend) is applied, at the level
of the iso-value (red iso-curve). Second row: The boundary curves ky bound
the region where the values of g are computed with g (light grey area). A
max operator is used outside. (a) Opened operator (6 = 0); (b) intermediate
situation; (c) closed operator (6 = 7 /4).

4.2 Composition Operators

Let us now define another family of quasi-C* functions for the com-
position operator g. This operator should produce smooth blends
and also be able to generate other useful compositions, such as
bulges when soft objects come in contact [Cani 1993]. Whatever
the type of composition, the operator should be parameterized by
the opening angle 6,60 € [0, w/4]. The challenge is to define an
operator that will fully apply the composition when 6 = 0 (opened
operator, e.g., a smooth blend), and gradually switch to a clean
union between the input shapes when 6 = % (closed operator),
while avoiding the limitations of Bernard’s operator (Section 1.1
and Figure 3).

Following the construction of operators with an opening angle,
our operator g uses the angle 6 to define the width of the region
where the composition is applied at the level of the iso-value (red
iso-curve in Figure 8). We also use boundary curves k, bounding
the region where the values of g modify the field of the combined
field functions f; and f, (light grey area in Figure 8). In this region,
g = g and g = max outside. A critical contribution here is the spe-
cial shape of our boundary curves k, when 6 varies from 0 to 7 /4
(Figure 8(b)). This shape has been specifically designed to continu-
ously interpolate between the vertical and horizontal boundary lines
of a standard blend (¢ = 0, Figure 8(a)) and the smooth boundary
curves intersecting at f; = f, = 0.5 of a clean union (0 = 7 /4,
Figure 8(c)).

We introduce a family of C* boundary curves whose intermediate
shape is shown in the second row of Figure 8(b) and in Figure 9(c).
These boundary curves are defined by C* functions ky(f), where
f is either f; or f,. We set ky(f) = tan(9)/2 inside of the implicit
primitives, where f > 0.5. Outside the primitives, where f < 0.5
the expression of & is

tan(e) 4 2
k —_ , 17
o(f) = (1 + an(®) 9(f)> )
with
if f < tan(6)
ro(f) = (18
o) { 7142"(6)45(2 2{_:2‘:(';0))) + anm) otherwise )
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and ¢ is a function ensuring the C* continuity of A4. ¢ is computed
by binary search at the required precision, from ¢! defined as:

o) =x+ - log(log( (]) )—l—l), (19)

where ¢ = exp(1) and with
v(x) = exp (exp(e —ex) — 1) — 1. (20)

In practice, the computation of ¢ does not affect efficiency since
our operators are precomputed on the GPU (see Section 4.3). The
value of g inside the region bounded by the boundary curves kq (in
grey on Figures 8 and 9(c)) is defined by an operator g : R?> — R,
which sets the type of composition we desire. The equation of our
composition operator g is thus

_ Jmax(fi, f2) if fi < ke(f2) or f2 < ke(f1)
8(fi. f) = {g(fl,]l‘z) ’ 0thérw1sg ’ ’ o
(21

The function g is defined from a silhouette curve 5(¢)
[0, 7/2] — R describing the shape of the iso-curves of g as il-
lustrated in Figure 9. For instance, an arc-of-a-circle is created
using 5(¢) = 1, V. For given values of f; and f5, the value of our
operator g( f, f>) is computed by solving the following equation in

g(f1. ) ={C : he(f1, fo) = 1} (22)
with
- V(i = k() + (f2 — kg(C))?
h , = , 23
c(fi, f2) 59)(C — k() (23)
and ¢ = arctan ;T ZEE; 24)

which expresses the fact that the iso-curves of g are scaled versions
of 5. In practice, Eq. (23)) does not always have a closed-form
solution. We thus precompute sampled values of g and interpolate
them on the GPU, as detailed in Section 4.3.

Using any C* silhouette curve 5, such that 5(0) = 5(z/4) = 1
and with flat derivatives at the level of the boundary curve (so that
g’s derivatives match those of the max function) is thus sufficient for
getting a C* operator g. To illustrate how different these silhouette
curves can be and the variety of resulting compositions, Section 5
will give the equations of the curves we use for smooth blending
and for a “bulge-in-contact” composition.

4.3 Implementation on the GPU

As discussed earlier, we use families of opening functions and
of composition operators that have all the required smoothness
properties, but that may not have any closed-form expression. For
efficiency, we developed a GPU implementation for these functions,
which enables us to apply gradient-based compositions in real time.

The GPU implementation is based on the following precomputa-
tions: the opening function which gives 0 from the angle between
gradients (Eq. (15)) and its denvatlve are stored as 1D textures.
We also precompute values of the operator g and of its partial
derivatives ﬁ, :/{?' , gg as functions of 6, f|, and f; in a regular grid
stored as a 3D texture. This is done efficiently using the following
procedure: The values of g are computed by grid slice (f/, f5),
(@, j) € [0; N — 1]?, for each grid coordinate 6;, k € [0; N — 1] (N?
being the size of the grid). In a slice, for each i, we set C; = f]i and
we follow the C;-iso-curve G; of g and update the sample values as
follows (see Figure 10).
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Fig. 9. (a) A silhouette curve 5(¢); (b) defines the shape of the C-iso-curves of g to produce (c) the corresponding operator g.
h G k -~ 323 643 1283
gi . ‘
" |
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o ' Cia-ko (Cit) max error  5.03 x 1072 2.90 x 10~ 2 1.39 x 1072 6.72 x 10~ 3
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¢ .t ¢ o, h
(@ (b) Fig. 11. Close-up on the surface obtained after three successive blends

Fig. 10. Computation of the interpolation parameter y; (a) (respectively
2 (b)), defined as the distances from X to G; (respectively from X to G;+1),
used to compute g at a sample point X in Egs. (25), (26), and (27).

—Outside of the boundary curves, that is, for each j such that fzj <
ke(f1), g = max(fi, f2) (Eq. (21)), so we set g(f{, fi) = C;
and g(f5, f) =G

—Inside of the boundary curves, for each sampling point X (X, X,)
located in the bounding box of the silhouette curve § scaled by
(Cit1 — kg(C;)) with the bottom-left corner in O;, we compute
y; and y; as in Egs. (26) and (27). When y; > 0 and y, > 0,
X is between G; and G;, 1, that is, the C;-iso-curve and the C; -
iso-curve, and we compute g(X) by linearly interpolating C; and
Ci+1 asin Eq. (25). We have

Ci Ci
3(X) = nCi+rnCia (25)
vit+»
with
i = 11X = Oill = 5(gi) (Ci — ko(C1)) (26)
2 = 5(@it1) (Ciy1 — ko(Ciz)) — I1X — Oipal - (27)
where
X, — ko(C;
O; = (ko(C}), ky(C;)) and ¢; = arctan Xi_—k:Egi;- (28)

Once all the values of g are computed, its partial derivatives are
evaluated using finite differences and stored in other grids.

During field queries for a composed implicit surface, the values
in these textures are linearly interpolated on the GPU: we first get
0 from the gradients of the input fields and then g(f1, f>) with this
specific opening angle 6. Depending on the primitive, gradients
are either computed using a closed-form expression or finite differ-
ences. To efficiently apply successive compositions, the gradient of
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when g is stored into textures of different resolutions. The piecewise linear
interpolation generates artifacts in reflections (here illustrating the continuity
of the fifth derivatives) with the 16> and 323 grids that are not perceptible
using higher resolutions. The third and fourth rows respectively give the
max and mean approximation error provided by the trilinear interpolation
of the precomputed values.

g(f1, f>) is computed as

a0 Bg
Vg = Vfl ofs +Vf2 ofs +V S 30"

A consequence of our GPU implementation is that the operators
we use in practice are not exactly the C* functions we developed, but
quasi-C* approximations of the latter: indeed, linear interpolation
of values in a texture prevents unwanted oscillation and enables us
to approximate the functions at any desired precision. We tested the
method with 16°, 323, 64°, and 128° grids for g and its gradients.
Figure 11 shows the improvement of reflection lines on a very close
view of a composed primitive when texture resolution increases. Our
current implementation uses 128 grids which is accurate enough
to prevent any visual artifact, even after multiple compositions.
Note that if a very high precision was required, for example, for
a manufacturing application, an offline evaluation mechanism with
bounded error could be set up, where binary search would be used
to find the resolution needed to obtain a given error bound.

(29)

5. APPLICATIONS

In this section, we present applications of our generic composition
operators to constructive modeling and animation. This leads us
to define specific silhouette curves 5 and the associated opening
functions 6.

5.1

Being able to smoothly blend arbitrary shapes is one of the most
useful compositions in constructive modeling systems. To create a

Smooth Blending for Constructive Modeling
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Fig. 12. Close view of the top of the cross formed by two blended cylin-
drical primitives: (a) using Bernhardt’s blending; (b) using our operator g
with a opening function preventing the unwanted bulge; (c) plot of s from
which g, is derived.

(b)

Fig. 13. Plots of g, in the (f1, f>) space for different values of the opening
angle 0. (a) Opened operator: § = 0. (b) 6 = §. Note the improved shape of
the iso-curves compared to those of Figure 3; (c) closed operator, resulting
in a clean union: 6 = %.

good blending operator g5, we need a C* silhouette curve 3, which,
in addition to meeting the value and derivative constraints listed at
the end of Section 4.2 (values 0.5 and null derivatives of every
order at the extremities), avoids curvature oscillations as much as
possible, as illustrated in Figure 12.

Our solution plotted in Figure 12(c) is a symmetric silhouette
curve whose curvature monotonically increases, with a maximum
at ¢ = /4, then decreases back to zero. We define s, as

(@) = 1— Llog (log (L+1>+1>, (30)
e v(p)

where v is defined in Eq. (20).

For our precomputations of g on the GPU, we express this profile
function in polar form, as s;(¢), by sampling the curve at points
X; = (x;, $p(x;)) and precomputing the value of ¢; at each X;. To
evaluate the function §j(¢), we use binary search to find the interval
[i; @i+1] containing ¢, and then use linear interpolation. Although
not exactly flat at the boundaries, this silhouette curve has zero
derivativesin ¢ = 0 and ¢ = 7/2 up to an error of € = 10>, which
is accurate enough for our needs. This operator is illustrated in R?
space in Figure 13 for different values of 6. Its fairness leads to a
clear improvement compared with Bernhart’s blending solution as
shown with reflection lines in Figures 12(a) and 12(b).

This blending operator g, computed using §;, can be combined
with different opening functions according to the need. Our appli-
cations to shape modeling lead us to design two specific examples
of opening functions.

The first one, whose parameter values are given in the first row of
Table I, is called the camel opening function because of the shape
of the associated curve (see its plot in Figure 15(a)). It is symmetric
and was especially designed to solve, for Wyvill’s local-support
soft objects [Wyvill et al. 1986], all four problems mentioned in
the Introduction (Figure 4). In the case of CAGD applications,
where two primitives join, this opening function provides smooth,
predictable blending behavior while preventing bulges.

A Gradient-Based Implicit Blend J 12:9

Table I. Parameter Values Defining Our Different
Opening Functions

o | ay | o 6| 61 | 6 wo | wi
Camel || 0 |7/2| « /4| 0 |m/4]l 1] 1
Organic || O |7/3|37/4 || w/6] O |m/4|| 3|1
Contact || 0 |7/2| = 0 |7/10|7/4 110.7

The second one, whose parameter values are given in the sec-
ond row of Table I, is called the organic opening function (see its
plot in Figure 15(b)). It was developed for an interactive modeling
system dedicated to the modeling of organic shapes, using global-
support convolution surfaces based on the Cauchy kernel [Tai et al.
2004]. Here, being able to model both smooth and sharp features
in the same composition is important: for instance, when blending
a character’s nose to the head (Figure 1(b)) or the leg and tail of an
animal to its body (Figure 14(right)), the junction has to be smooth
at the top but sharp at the bottom. To achieve this, our organic
opening function is set to be asymmetric: surfaces smoothly blend
where they have nearly orthogonal gradients, while a clean union
generating sharp creases is used when gradients tend to be in oppo-
site directions (see Figure 14(left)). This enables us to get detailed
organic-like models with both smooth parts and sharp creases.

5.2 Bulge in Contact for Soft Objects Animation

To illustrate the variety of compositions we can achieve, we de-
signed a “bulge-in-contact” operator g, inspired by Cani [1993],
which instead of blending primitives that intersect, mimics the ef-
fect of two surfaces in contact that bulge as if made from a soft
material such as rubber (Figures 16, 1(c) and (d)).

Keeping in mind that the silhouette curve 5 directly gives the
shape of the deformation, Figure 16(a) shows the deformation of f;
on the right and of f, on top. We set § such as to create smoothly
increasing and then decreasing bulges. This is done by using values
smaller than 0.5 on the silhouette curve. Figure 16(c) shows the
resulting point of contact (no deformation) and the deformation as
/i and f; overlap.

Defining these contact silhouette curves is done using the para-
metric expression S.(¢)(x (), y.(t)) with

K if t>1
X =y _ Kexp (1 — 5-)(t — 1) otherwise
€2y
_J1-Kexp(1-1)A—1) ifr=>1
Yelt) = {2_ ¢ otherwise

for t € [0,2], where K € [0, 1] is a parameter that controls the
thickness of the bump. The effect of K on the iso-curves of g,
is illustrated in Figure 16(a). The curve s, is perfectly flat at the
extremities and is, as desired, only C° continuous at ¢ = % in order
to simulate the fold to be created between the two input surfaces.
Again, the polar form s.(0) can easily be evaluated using binary
search, as done for s;, in Section 5.1.

Finally, a contact opening function, whose parameter values are
given in the third row of Table I, is designed so that when used with
our bulge-in-contact operator, objects do not deform at a distance but
bulge when they intersect, mimicking contact between soft objects,
as illustrated in Figure 15(c). The operator g. is illustrated with
K = 0.8 in Figures 1(d) and 16(c).

6. RESULTS AND DISCUSSION

Even though the implementation of the set of functions presented
here can be considered complex, its usage is not. The functions can

ACM Transactions on Graphics, Vol. 32, No. 2, Article 12, Publication date: April 2013.



12:10 . O. Gourmel et al.

e S N

Barthe’s blending “camel” blending
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“organic” blending in interactive modeling

Fig. 14. Comparison of Barthe’s blending with our operator g, used either with the camel or with the organic opening function.

n/4 n/4 n/4

@ (b) ©

Fig. 15. Three useful opening functions: (a) camel and (b) organic opening
functions used with the blending operator g; (c) contact opening function
used with the bulge-in-contact operator g.

be used in an interactive modeling framework as any other operator;
objects are added to the scene, selected, and the operator is applied
to two of them. With most traditional implicit operators the resulting
shape is fixed after applying the operator. In contrast our new set
of functions provide ways to further modify the shape, by altering
the silhouette curve and the opening function in a graphical editor,
however, most of the useful opening functions are defined in this
article and cover most of the practical cases. New opening functions
only need be defined for specialized operations.

The usefulness of our generic composition framework for con-
structive modeling and animation applications is illustrated in
Figures 17 and 1(d). The model presented in Figure 17 has been
built using ten different primitives combined with either our blend-
ing operator together with the camel opening function or with our
clean union operator (generating sharp edges). In the case of a blend
overlapping a sharp edge, we use the procedure presented in Sec-
tion 7 and in Figure 19. The object has been created interactively
using the Blob-tree [Wyvill et al. 1999] in several sessions over
a period of about eight hours. In the “lava lamp” animation, g, is
used in conjunction with our blending operator to also get some
blending when bubbles leave the bottom of the lamp. Other in-
teresting animation effects can be easily produced by dynamically
modifying the opening function parameters during an animation.
For instance, Figure 18 illustrates an animation where primitives
do not blend when they are not in contact, but do blend (and thus
deform each other) when they separate even though they are not in
contact anymore, as in standard blending.

Achieving good-quality results leads us to use more complex
equations for composition than in all previous methods. The efficient
evaluation of our operators is based on precomputation that only
needs to be performed once for each operator and for each opening
function, and just requires the memory space of a few textures. This
implementation allows us to use arbitrarily complex expressions for
g and 0, while answering field queries at the cost of a simple texture
fetch. Therefore, when designing a new operator, one can focus on
the desired effect rather than on the best properties a closed-form
equation could achieve. The precomputation of our operator and its
partial derivatives in 1283 grids takes 600 ms on a Core I7 950 and
their transfer to the device memory from the host memory takes
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Fig. 16. (a) Plots of 5. for K = 0.25 (red), K = 0.5 (green) and K = 0.75
(blue); (b) the corresponding operator g. when 6 = T and K = 0.8; (c) the
application of our operator g..

Fig. 17. Constructive modeling examples built using our new operators.
In this model, clean union and clean difference operators have been used in
conjunction with gradient-based blending operators. Both sharp edges and
subsequent gradient-controlled blends have thus been efficiently performed.

3 ms. The 786 million evaluations of g required for the rendering
of Figure 11 take less than 270 ms on a NVIDIA GTX 480.

7. LIMITATIONS

First, as we emphasized in Section 4.1, adequate slope for the open-
ing function has to be used, depending on the slope of the input field
functions, for not creating extra artifacts when removing a bulge. In
practice, we use the interactive feedback of implicit modeling sys-
tems to preset the steepness parameters wy and w; of our opening
functions according to the family of field function used. Typically,
we need sharper opening functions to blend soft objects based on
smooth polynomial field functions than to compose sharper convo-
lution surfaces. Once the steepness parameters are set, we design
specific opening functions by adjusting the three input values for
(o, O(a;)). Providing an automatic tuning of the opening function’s
slope would be a better solution. The method, as currently imple-
mented, still requires little user interaction since the manual tuning
only needs to be done once for a given family of field functions, for
each opening function.

A drawback of our gradient-based operators is that they theoreti-
cally require at least the continuity of the gradient directions of the
field functions f; and f, to be combined. Using our composition
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unwanted handle (camel)

clean union while primitives are not in contact

blending when primitives intersect

Fig. 19. Composition of a cube and a sphere at a gradient discontinuity (an edge of the cube). On the left, the artifact generated when the camel opening
function is used for blending, and then, opening functions solving the problem when the sphere moves and intersects the cube.

framework in a more general setting, where the field may have a
few singular points (with null gradients and therefore undefined
angle between gradients) would, however, be desirable, as well as
using it even for shapes with gradient discontinuities, for example,
for primitives with sharp edges. In case of null gradient vectors,
we simply decrease the opening angle to min(6y, 6;, ) when the
gradient norm becomes close to null, so that the opening function
is constant at the vicinity of the singularity. This only leaves us
with the case of artifacts created by discontinuities of the gradient
field. This is illustrated by Figure 19(left), where the camel opening
function is used for blending in the vicinity of a sharp edge. The
problem can be solved in the following way: while primitives are
not in contact, an opening function preventing blend is required,
and as soon as the primitives intersect, a blend can be progressively
performed. This is done easily by manually tuning a few opening
function parameters as illustrated in Figure 19. In an animation, the
opening function parameters have thus to be preset in key primitive
positions such as those presented in Figures 19 and then interpolated
during the animation.

As with all recent composition methods, the gradient-based op-
erators are restricted to binary compositions of implicit surfaces.
This may limit their applicability in situations where many primi-
tives need to be symmetrically connected at once. Generalizing the
idea of using gradients into n-ary composition operators would be
a topic for future work. Similarly, although they can be used to
compose convolution primitives, our operators cannot replace the
sum performing the convolution integral of each element (points,
segment, triangles) of a complex skeleton defining a convolution
surface [Bloomenthal 1997b]. We do not provide a solution to the
problem of a single convolution primitive unintentionally blending
with itself.

8. CONCLUSION AND FUTURE WORK

We have presented a generic family of composition operators appli-
cable to both constructive implicit modeling and animation. These
operators, implemented in real time on the GPU, allow precise tun-
ing of the transition between smooth blends and sharp union within
a single composition operation, making compositions both more

general and more predictable. The main feature of our approach is
the use of gradient-controlled blending: our operators are not only
a function of the field functions to be combined, but also of their
gradient. This avoids the well-known weaknesses of implicit mod-
eling, such as creating unwanted bulges and blending at distance.
In general, the topology of the resulting shape can be set to the
topology of the union. Moreover, our operators naturally prevent
small details from blowing up even when blended into much larger
primitives, thanks to the sharp changes of gradient values. In conse-
quence, complex models with both smooth parts and sharp creases
can be easily created, in contrast with the common idea that implicit
surfaces can only represent smooth, blobby shapes.

The natural extension of using the angle between field gradients
would be the use of the information on the norm of these gradients
to improve blends. This norm could be used to automatically set the
slope parameters of the opening functions, according to steepness
of the input fields. Another extension would be to rely on the second
derivatives of the input fields to detect fast local gradient variations.
This would help us to avoid user interaction currently necessary to
adjust opening functions in areas where the field functions are very
distorted or at the vicinity of gradient discontinuities such as sharp
edges. Lastly, the general methodology we developed for the open-
ing functions, that is, defining C* curves with some shape control
parameters, could be reused to introduce local-support C* fields for
implicit primitives. This would ensure always having smooth gra-
dient fields, whatever the number of gradient-based compositions.
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